
Implicit Autoencoder for Point Cloud
Self-supervised Representation Learning

Siming Yan1 Zhenpei Yang1 Haoxiang Li2 Li Guan2 Hao Kang2

Gang Hua2 Qixing Huang1

1The University of Texas at Austin 2Wormpex AI Research

Abstract. Many 3D representations (e.g., point clouds) are discrete
samples of the underlying continuous 3D surface. This process inevitably
introduces sampling variations on the underlying 3D shapes. In learning
3D representation, the variations should be disregarded while transferable
knowledge of the underlying 3D shape should be captured. This becomes
a grand challenge in existing representation learning paradigms. This
paper studies autoencoding on point clouds. The standard autoencoding
paradigm forces the encoder to capture such sampling variations as the
decoder has to reconstruct the original point cloud that has sampling
variations. We introduce Implicit Autoencoder(IAE), a simple yet effective
method that addresses this challenge by replacing the point cloud decoder
with an implicit decoder. The implicit decoder outputs a continuous
representation that is shared among different point cloud sampling of
the same model. Reconstructing under the implicit representation can
prioritize that the encoder discards sampling variations, introducing more
space to learn useful features. We theoretically justify this claim under a
simple linear autoencoder. Moreover, the implicit decoder offers a rich
space to design suitable implicit representations for different tasks. We
demonstrate the usefulness of IAE across various self-supervised learning
tasks for both 3D objects and 3D scenes. Experimental results show that
IAE consistently outperforms the state-of-the-art in each task. Our code
will be available at https://github.com/SimingYan/IAE.

1 Introduction

Point cloud provides a natural and flexible representation of 3D objects. The
rapid development of 3D scanning devices and techniques enables the capture and
access of massive amounts of point cloud data. With the emergence of powerful
deep learning models, we are now able to obtain promising performance on
many point cloud tasks, ranging from object-level understanding, including shape
classification [5] and part segmentation [55], to scene-level understanding, such
as 3D object detection [8, 12, 43] and 3D semantic segmentation [2]. While these
applications are important, manually annotating large-scale point cloud data can
be very costly due to difficulties in designing 3D interfaces and visualizing point
clouds. Because of this, there are growing interests in exploring self-supervised
representation learning on point cloud data.

Generally speaking, self-supervised representation learning studies how to
effectively utilize raw and unlabeled data to pre-train deep neural networks. The

ar
X

iv
:2

20
1.

00
78

5v
1

 [
cs

.C
V

]
 3

 J
an

 2
02

2

https://github.com/SimingYan/IAE

2 Yan et al.

Fig. 1: Difference between Explicit Autoencoder and Implicit Autoen-
coder (Ours). Pgt is the complete point cloud. Pgt

sub is a sub-sampled version
of the complete point cloud, that typically contains a fixed number of point
(e.g., 2048). P in is the input point cloud, which equals to Pgt

sub unless data
augmentation such as cropping(see Section 4.2) is applied. Unlike Explicit

Autoencoder that trains the decoder g to recover sub-sampled point cloud Pgt
sub,

Implicit Autoencoder forces the decoder g to recover the implicit representation
of the complete point cloud Pgt.

pre-trained weights are then transferred and fine-tuned on small-scale annotated
data for downstream tasks such as classification and segmentation. The network
weights initialized in this way tend to avoid weak local minimums and increase
the network’s performance stability [10]. Substantial effort has been devoted to
self-supervised learning methods for 2D images [6, 9, 25,34,51]. Among this line,
autoencoder is one of the most classical methods [3,18,34,45,46]. Typically, it
has an encoder that transforms the input into a latent code and a decoder that
expands the latent code to reconstruct the input. The latent code usually has
a much lower dimension than the input. By training with the reconstruction
loss, the autoencoder is forced to learn multi-scale features repeating among the
inputs. The performance of such an approach normally depends on the network
architecture. Unlike the conventional structured data (e.g., images), point clouds
are unordered collections of points. There is increasing literature addressing
suitable network architecture and learning algorithms for autoencoding on point
clouds. For example, Yang et al. [54] proposed a point cloud autoencoder with a
novel folding-based decoder. Wang et al. [47] designed a denoising autoencoder
using a standard point cloud completion model. However, these works exclusively
follow the design paradigm for image autoencoding, i.e., the decoder and the
encoder share the same representation (point cloud in this case) as the input.

We argue that there is a fundamental drawback in using point cloud as the
decoder representation for autoencoding. Point clouds are spatially unstructured
discretized representations of 3D shapes. Many different point clouds could
represent a single 3D shape. The resulting sampling variations do not capture
information that is useful for 3D understanding. However, a point-based autoen-
coder forces the encoder to remember such useless variations since the decoder
has to reconstruct the original point clouds.

This paper proposes a non-symmetric point cloud autoencoder scheme that
uses the implicit function as the output surface representation, dubbed IAE(Implicit
Autoencoder). IAE enjoys multiple advantages over traditional point cloud
autoencoders. First, the sampling variations problem is addressed using the

Implicit Autoencoder 3

implicit surface representation. In other words, the implicit decoder outputs a
continuous representation that is shared among different point cloud sampling of
the same model. Reconstructing under the implicit representation can prioritize
that the encoder discards sampling variations, introducing more space to learn
useful features. Second, the learning process of IAE is guided by minimizing
the discrepancy of two implicit functions, which do not require the explicit
computation of data association(e.g., Earth Mover Distance (EMD) [41] or
Chamfer Distance (CD) [11]). Moreover, without the need to decode the whole
point cloud, our model is smaller and more resource-efficient. Our model can
process up to 40k input points in a single Tesla V100 GPU, making it possible to
keep necessary details while pre-training on a large real-world point cloud. Our
IAE scheme is illustrated in Figure 1.

To demonstrate the usefulness of IAE, we verify that the learned representation
from our pre-trained model can be successfully adapted to both object and scene-
level understanding tasks, including 3D shape classification, 3D object detection,
and indoor scene semantic segmentation. Experimental results show that IAE
consistently outperforms the state-of-the-art in each task. Our experiments also
show that the performance gains of IAE are persistent when varying the sampling
resolution, although the relative numbers slightly drop when increasing the
sampling resolution. On the one hand, this is expected as sampling variations
reduce when increasing the sampling resolution. On the other hand, the persistent
performance gain is attributed to the fact that there are computational challenges
in matching point clouds, e.g., convergence and local minimum issues under
both EMD and CD, for autoencoding. Such computational challenges amplify
for larger point clouds, as the search spaces become more complex.

2 Related Work

Self-supervised Representation Learning on 2D image Self-supervised
learning is a well-studied task in computer vision [9, 15, 34, 57, 60]. Most relevant
methods are motivated by the observation that high-level semantic features
are implicitly correlated with a wide variety of non-semantic “proxy” features.
Many these kind of proxy features are accessible by simple image manipulation,
including image inpainting [34], colorization [57], jigsaw puzzles [30], rotate
prediction [15], and etc. By learning explicitly to predict the proxy feature, the
learned representations create representations that implicitly capture higher-
level features. Recently, another family of self-supervised learning approaches,
contrastive learning [4, 6, 19, 51, 61], has emerged with substantially improved
transfer performance. These contrastive embedding objectives optimize networks
to discriminate the embeddings of each instance. Typically, they aim at embedding
augmented versions of the same sample close to each other while trying to push
away embeddings from different samples.
Autoencoding An autoencoder typically contains two parts: an encoder and a
decoder. Generally, they work by compressing the input into a low-dimensional
latent code and then reconstructing the output from it. The latent code is
usually constrained by a much smaller dimension than the input. By training
the autoencoder, the latent code is forced to drop input redundancies and

4 Yan et al.

preserve useful features. Autoencoding is a classical method for representation
learning [25,46], which has been out-performed by contrastive learning approaches
for years. However, the recent work in this line, He et al. [18], has reclaimed
state-of-the-art performance.

Self-supervised Representation Learning on Point Cloud Unlike conven-
tional structured data (e.g., images), point clouds are unordered sets of vectors,
which pose extra challenges to representation learning. Most recent methods focus
on learning representations from a single 3D object [1,17,21,36,42,47,54]. These
methods mainly pre-train their models on ShapeNet [5]. However, the resulting
models are found to have limited transferability to a real scene-level dataset, which
is previously attributed to the domain gap [53]. In contrast, [40,53,58] directly
apply representation learning on real-world scene-level point clouds. With the
success of contrastive learning in 2D images, Xie et al. [53] proposed a point-level
contrastive learning method that computes point-wise correspondences between
the different views of a point cloud. Rao et al. [40] learned the 3D representation
by applying object-level contrastive learning on two random scenes generated from
the same set of synthetic objects. Inspired by instance discrimination [51], Zhang
et al. [58] proposed a contrastive learning approach on point cloud instances.
These methods require a strategy to define positive and negative pairs. They
require substantial computational resources for large-scale batch size training.
Unlike exploring different learning methods, this paper focuses on addressing the
impact of sampling variations of point clouds.

Autoencoding Our work falls into the paradigm of point cloud autoencoding. In
the same spirit of image autoencoding, point cloud autoencoding seeks to jointly
train an encoder and a decoder that can recover the input point cloud or a
complete point cloud. Probably the most similar work to ours are FoldingNet [54]
and OcCo [47]. FoldingNet designed a point cloud autoencoder with a novel
folding-based decoder. OcCo proposed a pipeline first to mask point cloud from
camera viewpoints and then reconstruct the complete point cloud by a standard
point cloud completion model [56]. Both works demonstrate promising gains
of such pre-training. However, using point cloud as decoder representation has
several drawbacks. First, the discrete surface representation forces the autoencoder
to learn irrelevant input sampling information. Second, unlike grid-structured
images, which can be easily decoded using convolution, symmetrically training a
point cloud decoder is considerably harder. In contrast, we propose to replace
the point-cloud generation by implicit representation generation. As described in
Section 1, the implicit representation decoder enjoys multiple benefits compared
to the point cloud decoder and addresses the above problems effectively.

Implicit Representations Recent works have investigated the implicit repre-
sentation of continuous 3D shapes by optimizing deep networks that map 3D
coordinates to signed distance [27,32] or occupancy grids [7, 26,35]. In contrast
to explicit representations (e.g., point cloud, voxel, and triangle mesh) that
possess discretization errors, implicit models represent shapes continuously and
can handle complicated shapes with varying topologies. Implicit representations
have been successfully adapted in various 3D tasks ranging from 3D reconstruc-
tion from images [23,24,29], primitive-based 3D reconstruction [13,14,33], 4D
reconstruction [28], and representing continuous texture [31]. However, no prior

Implicit Autoencoder 5

work has integrated implicit representations into self-supervised representation
learning on point clouds to the best of our knowledge.

3 Motivation

The motivation of IAE can be summarized as follows. Point clouds sampled
from continuous 3D models have sampling variations that do not capture useful
information about the underlying 3D geometry. In the context of representation
learning via autoencoding, if both the encoder and the decoder use point cloud
as the surface representation, they will be forced to capture such variations
to reconstruct the original inputs. On the other hand, if the decoder uses the
implicit representation, which is invariant to such sampling variations, then the
encoder and the decoder do not need to capture such variations. Instead, the
encoder is encouraged to disregard the irrelevant sampling variations to capture
the underlying 3D geometry features. For simplicity, we provide an analysis under
a linear autoencoding model, which already offers valuable insights.

Specifically, suppose we have N > n points xi ∈ Rn, 1 ≤ i ≤ N . Without
losing generality, we assume xi lies on a low-dimensional linear space {L } of
dimension m < n. These data points are used to model the underlying 3D models.
Now let us perturb each point x′i = xi + εi, where εi is used to model sampling

variations. We assume εi ∈ {L }⊥, meaning they encode variations that are
orthogonal to variations of the underlying 3D models. Denote X := (x1, · · · ,xN)
and X ′ := (x′1, · · · ,x′N).

We consider two linear autoencoding models. The first one, which is analogous
to IAE, takes x′i as input and seeks to reconstruct xi:

A?, Q? = argmin
A′,Q′∈Rn×m

N∑
k=1

‖A′Q′Tx′k − xk‖2

s.t. Q′
T
Q′ = Im, Q

′ ∈ {C } (X ′) (1)

Here Q′ is the encoder, and A′ is the decoder. {C } (X ′) denotes the column
space of matrix X ′. The constraints Q′TQ′ = Im and Q′ ∈ {C } (X ′) ensure that
the encoder-decoder pair is unique up to an unitary transformation in O(m). The
following proposition characterizes that Q? is independent of εk, 1 ≤ k ≤ n.

Proposition 1. Let Q ∈ Rn×m collect the top-m eigenvectors of the convariance

matrix C =
N∑
k=1

xkx
′
k. Then under the assumption that εk ∈ {L }⊥ , 1 ≤ k ≤ N ,

Q? = Q. (2)

In other words, Q? does not encode sampling variations.
Now consider the second autoencoding model where we force the encoder-

decoder pair to reconstruct the original inputs:

Â?, Q̂? = argmin
A′,Q′∈Rn×m

N∑
k=1

‖A′Q′Tx′k − x′k‖2F

s.t. Q′
T
Q′ = Im, Q

′ ∈ {C } (X ′) (3)

6 Yan et al.

In this case, Â? = Q̂?, and both of them are given by the top m eigenvectors of

the covariance matrix C ′ =
∑

x′kx
′
k
T

.

To quantitatively compare encoders Q̂? and Q, we need the following definition.

Definition 1. Consider two unitary matrices Q1, Q2 ∈ Rn×m where QTi Qi = Im.
We define the deviation between them as

D(Q1, Q2) := Q1 −Q2R
?, R? = argmin

R∈O(m)

‖Q1 −Q2R‖2F (4)

The following proposition specifies the derivatives between Q̂? and εk.

Proposition 2. Under the assumption that εk ∈ {L }⊥ , 1 ≤ k ≤ N , we have

∂D(Q̂?, Q)

∂εki
= (In −QQT)(eix

T
k)QΛ+ (5)

where Λ = diag(λ1, · · · , λm) is a diagonal matrix that collects the top eigenvalues
of C that correspond to Q. ek is the k-th basis vector.

In other word, Q̂? is sensitive to εk. Therefore, it encodes sampling variations.

4 Approach

This section introduces the details of IAE. We begin with describing the underlying
principles of IAE in Section 4.1. Next, We describe the technical details of IAE
in Section 4.2. Then, we show the implementation details in Section 4.3.

4.1 Explicit Autoencoder v.s. Implicit Autoencoder

Explicit Autoencoder. Given an input point cloud P in ∈ Rn0×3 and a target
point cloud Pgt, an Explicit Autoencoder jointly trains an encoder fΘ and a
decoder gΦ using a distance metric dexp(·, ·) : Rn0×3 ×Rn1×3 → R between the

input point cloud and the sub-sampled version of target point cloud Pgt
sub ∈ Rn1×3:

min
Θ,Φ

dexp((gΦ ◦ fΘ)(P in),Pgt
sub) (6)

This paper differentiates two settings of autoencoding. In the case of pure
autoencoding, Pgt

sub = P in. In contrast, the second setting considers point cloud

completion from partial inputs. In this setting, Pgt
sub is typically different than

P in. Common choices of dexp include Earth Mover Distance (EMD) and Cham-
fer Distance (CD). Computing EMD requires computing an optimal bijective
mapping between two point clouds. Computing CD is comparably less expensive
but still requires finding correspondence between two point clouds.
Implicit Autoencoder. In contrast to Explicit Autoencoder which needs to
predict the full explicit representation using fΘ, Implicit Autoencoder outputs
an implicit function (gΦ ◦ fΘ)(x|P in) : R3 → R, where x ∈ R3 denotes the query

Implicit Autoencoder 7

Fig. 2: Detailed pipeline of Implicit AutoEncoder. Left: Pre-training
stage. Take ScanNet data as an example. Given a point cloud Pgt, we apply a
random center crop for the input point cloud P in. Backbone module f encodes
the input. Prediction module g takes embedding features from f and query point
x as input and outputs implicit prediction1. g0 is ground truth implicit function
obtained from Pgt. After pre-training, we only keep f for further fine-tuning.
Right: Downstream tasks contain two parts. For object-level tasks, we evaluate
on object classification task. For scene-level tasks, we evaluate on object detection
and semantic segmentation.

point. This function is conditioned on the input point cloud P in. We further
define the ground truth implicit function as g0(x) : R3 → R. In practice, g0 can
be chosen as the signed distance function, occupancy grid, among others. The
training objective is to match these two functions through a distance metric dimp

between implicit surfaces:

min
Θ,Φ

dimp((gΦ ◦ fΘ)(x|P in), g0(x)) (7)

Here, the choice of dimp and g0 are typically coupled. For example, when g0 is
a signed distance function we choose dimp to be L1 distance. On the other hand,
we choose dimp to be a cross-entropy when g0 is the occupancy grid.

4.2 Design Space for Implicit Autoencoder

Network Architecture. The network structure of our paradigm includes an
encoder fΘ and a decoder gΦ, as shown in Figure 2. Our Implicit Autoencoder
trains these two modules together. After pre-training, gΦ is discarded and the
encoder module fΘ is further fine-tuned for downstream tasks. Note that fΘ can
use different backbones for different tasks. Details are shown in Section 5.2.

The network architecture of gΦ can take different implicit representations. Our
experiments explore two different designs of gΦ: Occupancy Network Style and
Convolutional Occupancy Network style. Detailed analysis is shown in Section 5.3.

1 For simplification, we denote f as fΘ, g as gΦ, and do not show the query point x in
Figure 2.

8 Yan et al.

Experimental results show that the Convolutional Occupancy Network style
prediction module gΦ exhibits better performance.
Output Encoding. The formulation of Eq 7 gives the flexibility of defining g0
by choosing a suitable implicit encoding of the output. We experimented with
different ways to define g0. The first one defines g0 as the signed distance to the
point cloud Pgt. We also experimented with the unsigned distance field (e.g.,
when normal information is unavailable). Moreover, we also experimented with
different occupancy functions.
Loss Function. A simple way to minimize the distance between gΦ ◦ fΘ and g0
is to minimize the evaluation on a sample set of the ambient space. For example,
in the case of the unsigned distance field, the evaluation is defined using the L1

norm:

L =
1

N

N∑
i=0

‖(gΦ ◦ fΘ)(xi|P in)− g0(xi)‖ (8)

where xi ∈ S is uniformly sampled inside the bounding box of P in.
Partial Point Cloud Input. To help the model capture high-level semantic
features, we randomly center-crop a part of the input point cloud (See Figure 2).
We show that our model is able to reconstruct the missing parts and the resulting
encoder can achieve better performance in downstream tasks.

4.3 Implementation Details

Data Generation. Given a point cloud Pgt, we first randomly choose a removing
ratio from 0% to 50% and apply a center-cropping on it to get the input point
cloud P in. To build the ground truth label of the implicit function g0, we use
different strategies on synthetic and real datasets. First, we uniformly sample
the query points within the volume of interest. Then, for the real dataset, to
obtain the unsigned distance value, we directly compute the distance d between
the query point and nearest point from Pgt. And because the point cloud from
the real dataset is usually incomplete, we do not define the sign distance values.
For the occupancy value, we set the label to be 1 if the distance d < 0.005m, and
0 if d ≥ 0.005m. For the synthetic dataset, we obtain the true signed distance,
unsigned distance, and occupancy values from the underlying water-tight meshes.
Pre-training. We implement all models in PyTorch and use Adam optimizer
with no weight decay. The learning rate is set to 10−4 for all datasets. For
ShapeNet, we pre-train the models for 600 epochs. And for ScanNet, we pre-train
the models for 1000 epochs.

5 Experiments

In this section, we first introduce the pre-training setting of IAE on different
datasets in Section 5.1. Next, we evaluate our models on various downstream tasks
in Section 5.2. At length, we present a series of ablation studies and experiment
analysis in Section 5.3 and 5.4.

Implicit Autoencoder 9

Method ModelNet40

3D-GAN [49] 83.3%
Latent-GAN [1] 85.7%
SO-Net [21] 87.3%
MAP-VAE [16] 88.4%
Jigsaw∗ [42] 84.1%
FoldingNet∗ [54] 90.1%
Orientation∗ [36] 90.7%
STRL∗ [20] 90.9%
OcCo∗ [47] 89.7%

IAE(ours) 92.1%

Table 1: Linear evaluation for
shape classification on Mod-
elNet40. Note that to make a
fair comparison, different ∗ meth-
ods use the same DGCNN en-
coder backbone.

Category Method ModelNet40

Supervised

PointNet [38] 89.2%
PointNet++ [39] 90.7%
PointCNN [22] 92.2%
KPConv [44] 92.9%
DGCNN [48] 92.9%
PointTransform [59] 93.7%

Self-
Supervised

FoldingNet [54] 93.1%
STRL [20] 93.1%
OcCo [47] 93.0%
IAE(ours) 93.7%

Table 2: Shape classification fine-tuned
results on ModelNet40. Supervised learn-
ing methods train the model from scratch. Self-
supervised methods use the pre-trained models
as the initial weight for supervised fine-tuning.
All the self-supervised methods shown here
use the same DGCNN encoder backbone.

5.1 Pre-Training Dataset

We use two datasets for pre-training. ShapeNet is used for shape classification.
ScanNet is used for indoor 3D object detection and 3D semantic segmentation.
ShapeNet [5] contains 57,748 synthetic 3D shapes from 55 categories. We follow
the procedure of [26, 32] to generate the signed distance, unsigned distance,
and occupancy grid labels for each point cloud. Note that we need water-tight
meshes in this step to generate the sign. During training, we apply the same data
augmentation methods as FoldingNet [54].
ScanNet [8] contains more than 1500 real indoor scenes. We apply a sliding
window strategy and crop each scene into small cubes with the size of d× d× d.
We set d = 3.0m in this paper. Following the train/val split from [37], we extract
around 8K/2.5K point clouds in the training/validation set. For each point cloud,
we randomly sample 10000 points as the input. Due to the lack of water-tight
meshes, we cannot easily define signed distances and occupancy values. Therefore,
we follow the procedure described in Section 4.3 to obtain the true labels. During
training, we force the network to generate unsigned distance values by taking
absolute values at the output layer.

5.2 Downstream Tasks

One of the most important motivations for representation learning is to learn
features that can transfer well to different downstream tasks. In this section, we
present the experiment settings and results for each downstream tasks.

Shape Classification. Following the standard protocols from previous work,
we evaluate the shape feature learning of our model on ModelNet40 benchmark
[50]. ModelNet dataset has two variants, i.e., ModelNet40 and ModelNet10.
ModelNet40 consists of 9832 training objects and 2468 test objects in 40 classes.

10 Yan et al.

(a) Random (b) FoldingNet (c) OcCo (d) IAE(ours)

Fig. 3: Visualization of learned features. We visualize the learned features
for each sample in ModelNet10 using t-SNE. All the models use DGCNN as the
encoder backbone. (a) uses random initialization. (b),(c),(d) are pre-trained on
ShapeNet.

ModelNet10 consists of 3991 training objects, 908 test objects in 10 classes. We
pre-process the training datasets by following [38]. Each shape is sampled to
10,000 points.
Linear SVM Evaluation. In this experiment, we train a linear Support Vector
Machine (SVM) classifier using the latent code obtained from our backbone
module fΘ, which is pre-trained on ShapeNet. To make a fair comparison, we
use DGCNN [48] as the encoder backbone, following the practice of previous
approaches [20, 36, 47]. We randomly sample 2048 points from each shape for
both pre-training and SVM training. Table 1 shows the classification results.
IAE achieves the state-of-the-art performance of 92.1% accuracy on ModelNet40,
while the runner-up method only has 90.9% accuracy. Since the pre-training of
the encoder and the training of linear SVM are on different datasets, such results
also demonstrate the transferability of our model.
Supervised Fine-tuning. In this experiment, we fine-tune our pre-trained
model using supervised methods. Specifically, we use our pre-trained model as
the initialization weights of the DGCNN encoder and then fine-tune it on the
ModelNet40 dataset. The results are shown in Table 2. We can see that IAE
shows the best performance (93.7%) among other self-supervised approaches
under the same encoder backbone (DGCNN).
Embedding Visualization. We visualize the learned features of our model and
baseline approaches in Figure 3. We compare with FoldingNet [54], OcCo [47], and
a sanity-check baseline, random initialization. Random initialization use randomly
initialized network weight to obtain the embedding, and its performance explains
the network prior. The embeddings for different categories in the ModelNet10
dataset are shown using t-SNE dimension reduction. Empirically, we observe
that our pre-trained model provides a cleaner separation between different shape
categories than FoldingNet [54], OcCo [47], and random initialization.

Indoor 3D Object Detection. Self-supervised pre-training for real-world
3D object detection is considered more challenging than shape classification.
As observed in PointContrast [53], pre-training on synthetic datasets, such
as ShapeNet, usually does not generalize well to real-world tasks. However,
pre-training on real-world datasets turns out to be difficult as well. Since real-
world point clouds are usually very noisy, complicated, and incomplete, previous

Implicit Autoencoder 11

Method ScanNet SUN RGB-D
AP50 AP25 AP50 AP25

VoteNet [37] 33.5 58.6 32.9 57.7
STRL [20] 38.4 59.5 35.0 58.2
RandomRooms [40] 36.2 61.3 35.4 59.2
PointContrast [53] 38.0 59.2 34.8 57.5
DepthContrast2 [58] 39.1 62.1 35.4 60.4

IAE (Ours) 39.8 61.5 36.0 60.4

Table 3: 3D object detection results. We fine-tuned our pre-trained model on
ScanNetV2 and SUN-RGBD validation set using a popular detection framework,
VoteNet [37]. We show mean of average precision(mAP) across all semantic
classes with 3D IoU threshold 0.25 and 0.5. Our method outperforms prior work
across most metrics.

approaches [36,42,47] failed to achieve considerable performance gains via self-
supervised pre-training.

IAE takes advantage of convolutional occupancy network to generate implicit
functions as output, making it easier to handle complex point clouds [35].
Specifically, we use VoteNet-style PointNet++ [37] as our encoder module fΘ
and pre-train the model on ScanNet. Next, we use the pre-trained weights as
the initialization and further fine-tune them for detection tasks. Table 3 shows
the results. Our model shows 18.8% and 4.9% improvements compared with
training from scratch on mAP 0.5 and 0.25, respectively. Furthermore, we also
fine-tune our pre-trained model on a more challenging dataset, SUN RGB-D [43].
It contains 10,335 single-view RGB-D images, split into 5,285 training samples
and 5,050 validation samples. As shown in Table 3, our model performs the best
on SUN RGB-D. The difference between the pre-training dataset and fine-tuning
dataset further demonstrates the transferability of our pre-training method.

Indoor 3D Semantic Segmentation. We further evaluate our model on
the indoor semantic segmentation task. We use Stanford Large-Scale 3D Indoor
Spaces (S3DIS) [2] which consists of 3D point cloud data from 6 large-scale indoor
areas with per-point categorical annotation. Our model is pre-trained on ScanNet
and fine-tuned on S3DIS. We report the results in Table 4. IAE consistently
outperforms other methods. It outperforms the state-of-the-art method by 0.8%
and 3.8% on OA and mIoU.

Label Efficiency Training. We study the label efficiency of our model on 3D
object detection by varying the portion of supervised training data. Results can
be found in Figure 4. We use 20%, 40%, 60%, and 80% of the training data from
ScanNet and SUN RGB-D dataset. We can observe that our pre-training method
gives larger gains when the labeled data is less. And with only 60% training
data on ScanNet/SUN RGB-D, our model can get similar performance compared
with using all training data from scratch. This suggests our pre-training can help
the downstream task to obtain better results with fewer data.

2 In the DepthContrast paper, they used a slightly larger model than Votenet. For a
fair comparison, we reproduce DepthContrast with the original Votenet model.

12 Yan et al.

Fig. 4: Label efficiency training. We pre-train our model on ScanNet and then
fine-tune on ScanNet and SUN RGB-D separately. During fine-tuning, different
percentages of labeled data are used. Our pre-training model outperforms training
from scratch and achieves nearly the same result with only 60% labeled data.

Method OA mIoU

DGCNN [48] 84.1 56.1
Jigsaw [42] 84.4 56.6
OcCo [47] 85.1 58.5

IAE(ours) 85.9 60.7

Table 4: Semantic segmenta-
tion results on S3DIS. We
show overall accuracy(OA) and
intersection of union(mIoU) across
six folds.

Task Pre-train Acc/AP25

Object detection
ScanNet 60.4

ShapeNet 59.4

MN40 Linear
ScanNet 91.1%

ShapeNet 92.1%

Table 5: Cross-domain generalizability
between ShapeNet and ScanNet. For 3D
object detection task, we report mAP at
IoU=0.25 on SUN RGB-D dataset. For
ModelNet40 Linear evaluation task, we
report classification accuracy.

Cross-domain generalizability. Utilizing synthetic CAD object models to
help the learning of 3D real data tasks(e.g., object detection) remains an open
problem in 3D computer vision. Xie et al. [53] provides a failure object detection
case when pre-training the backbone model on ShapeNet and fine-tuning on
ScanNet. However, recently, Huang et al. [20] reported an opposite observation
and attributed the failure reason of [53] to the simple encoder architecture. Since
it is much easier to access a large number of synthetic data, it is still desirable
to explore the possibility of whether the learned model on synthetic data can
have good generalizability to real data. To elucidate this problem, we pre-train
the model on the real ScanNet dataset and the synthetic ShapeNet dataset, and
test their cross-domain generalizability. Table 5 summarizes the results. For 3D
object detection, the model pre-trained on ShapeNet can achieve 59.4 mAP,
which is lower than the one pre-trained on ScanNet. However, it still shows an
improvement over training from scratch (57.7). This observation is consistent with
the conclusion from Huang et al. [20] and demonstrates the effective cross-domain
generalizability of our model.

Conversely, we also report linear evaluation results on the ModelNet40
benchmark. It is interesting to observe the transferability from natural scenes
to the synthetic shape domain. Surprisingly, pre-training on ScanNet achieves a

Implicit Autoencoder 13

Decoder Method ModelNet40

Explicit
FoldingNet [54] 90.1%
OcCo [47] 89.7%
SnowflakeNet [52] 89.9%

Implicit
OccNet [26] 91.5%
Conv-OccNet [35] 92.1%

Decoder Functions ModelNet40

Explicit Point Cloud 90.1%

Implicit

Occ Value 91.3%
UDF 91.7%
SDF 92.1%

Table 6: Left: Ablation study on different decoder model. On ModelNet40,
we show linear evaluation results. Our implicit auto-encoder formulations
can be improved upon explicit counterpart under various decoder models.
Right: Ablation study on implicit function. For explicit representation,
we use FoldingNet as the decoder. For implicit representation, we experimented
with Occupancy Value(Occ Value), Unsigned Distance Function(UDF), and
Signed Distance Function(SDF) and find consistent improvement over explicit
representation.

comparable result with 91.1% accuracy. This result outperforms previous state-
of-the-art methods and demonstrates the strong transferability of our model.

5.3 Ablation Study

In this section, we discuss a series of ablation studies to understand the benefit
of each design choice of IAE.
Explicit Decoder v.s. Implicit Decoder. In this experiment, we use the
same encoder model and experimented with different decoder models from both
categories. Specifically, we study three state-of-the-art explicit decoder models
of FoldingNet [54], OcCo [47], and SnowflakeNet [52], and two implicit decoder
models of Occupancy Network [26] and Convolutional Occupancy Network [35].
Note that while Convolutional Occupancy Network is a volumetric implicit rep-
resentation, Occupancy Network does not contain any volumetric representation.
We pre-train on ShapeNet and evaluate models on ModelNet40 benchmark using
linear SVM. The results are shown in Table 6. Surprisingly, we found the implicit
decoders achieve consistently better performance than all explicit decoders.
Different Implicit Functions. We also investigate several different implicit
representations, including signed distance function, unsigned distance function,
and occupancy. Encouragingly, as shown in Table 6 right, all of them show better
results than the explicit representation. Among those implicit representations,
we found signed distance function works the best.
Completion v.s. No Completion. Instead of taking complete point cloud
as input, an alternative approach is to take a partial part. Possessing the
ability to recover the missing part, the model should be able to learn structural
and contextual information, especially on real data. To study the influence of
completion, we tried several different cropping settings. The results are reported
in Table 7. We conduct all the experiments here on ScanNet and fine-tune the
pre-trained models on 3D objection detection. First, we try different maximum
cropping sizes, including 0%, 20%, 50%, 70% of the input point cloud. 0% means
the input point cloud is complete. We find that all the models outperform training
from scratch. The model with a maximum cropping size of 50% achieves the

14 Yan et al.

cs=0 cs=0.2 cs=0.5 cs=0.7 gt SUNRGBD

- - - - - 57.7√
- - - - 60.0

-
√

- - - 60.2
- -

√
- - 60.4

- - -
√

- 59.8
- - - -

√
60.8

Table 7: Different setting of data augmentation. ‘cs’ denotes cropping
size. ’gt’ means using ground truth bounding box to guide partial point cloud
generation. The first line shows the result with no pre-training.

Decoder Method SUN RGBD

Explicit
FoldingNet [54] 58.2
OcCo [47] 58.4
SnowflakeNet [52] 58.1

Implicit Conv-OccNet [35] 60.4

Table 8: Comparison between ex-
plicit approaches and our model
on real data completion task. Our
model built upon convolutional oc-
cupancy network shows consistent
improvements.

Fig. 5: Qualitative completion re-
sults on ScanNet. We show the results
of SnowflakeNet [52] and our model.

best transfer learning performance on the SUN RGB-D dataset. Note that the
cropping size=0 model can also get 60.0 mIoU, which is very close to the prior
state-of-the-art method. These results further demonstrate the effectiveness of
using implicit function as the output representation.

One interesting question to ask is that if we use ground truth bounding boxes
of objects to guide partial point cloud generation, will the model learn better
representation? To answer this question, we conduct the following experiment.
For each input, we locate one target object around the center point(±0.5m). Then
we randomly choose one-half part of the center cube(1.5m× 1.5m) and remove
it. Note that other objects near the target within the range are likely cropped
as well. Using this dataset, we pre-train another model and fine-tune it on SUN
RGB-D detection. The result is shown in the last line of Table 7. Our approach
achieved 60.8 mIoU, which is superior to our best setting. We hypothesis that this
is because this setting forces the model to pay more attention to object-related
contextual and semantic features and hence learn better representation for related
high-level tasks.
Completion Result. To demonstrate the effectiveness of using implicit functions
on the real data completion task, we compare with three explicit methods. In the
same completion data setting, we pre-train FoldingNet, OcCo, and the current
state-of-the-art point cloud completion approach SnowflakeNet [52] on ScanNet.
Then we fine-tune models on SUN RGB-D detection. We show the result in

Implicit Autoencoder 15

Fig. 6: Comparison between explicit and implicit auto-encoder. ‘Acc
Diff’ denotes the accuracy difference between two models on ModelNet40 linear
evaluation. With the increase of input point number, the gap between explicit
and implicit model decrease. Please note that both models show slightly worse
performance compared to Table 1 because we do not add data augmentations in
this experiment.

Table 8. Our model outperforms these three explicit approaches consistently.
Also, We show qualitative results of SnowflakeNet and our model on ScanNet.
As shown in Figure 5, the explicit model failed to complete the missing part of
the point cloud from ScanNet, while IAE gives a plausible completion.

5.4 Experiment Analysis

As discussed in Section 3, we argue that explicit autoencoders are forced to capture
sampling variations in order to reconstruct the original point cloud. Intuitively,
such sampling variations drop when increasing the sampling resolution.

To further study this problem, we conduct the following experiment. According
to the definition in Section 4.1, first, on ShapeNet, we generate four datasets by
sampling different number points of the input point cloud, ranging from n0 = 256
to 2048 points. Then, we pre-train both explicit and implicit models and evaluate
them on ModelNet40 using linear SVM. More precisely, consider n0 = 256. For
explicit models, the output is consistent with the input, which means n1 = 256.
Therefore, the output number of explicit models varies across different datasets.
We use the FoldingNet-based decoder due to its flexibility and accuracy. For
implicit models, the only difference among datasets is the input point cloud. The
ground truth implicit function values keep the same. We use the convolutional
occupancy network-based decoder and take SDF as the implicit representation.
The result is illustrated in Figure 6. For fair comparisons, we train the models
with two types of encoders, FoldingNet-based and DGCNN.

Under both settings, we notice that when increasing the point cloud resolution,
the gap between explicit and implicit models narrows (gray dashed line). Our
hypothesis is, for the explicit model with coarse point clouds and large sampling
variations, it is forced to learn the sampling bias to reconstruct the ground-truth
point clouds, which is not part of the generalizable knowledge. Therefore, it obtains
the best performance when the input number increases to 2048. In contrast, for
the implicit model, the ground truth label never changes. The learning supervision

16 Yan et al.

is consistent by minimizing the discrepancy of two implicit functions. So the
change across different datasets is not that significant. We empirically validate
that by taking implicit function as the decoder representation. In this case, the
encoder is able to disregard the irrelevant sampling variation, which is why IAE
can achieve better performance across different tasks.

In summary, while there are some reductions in performance gains of IAE
when increasing the sampling resolution (gray dashed line), the performance gains
are still considerable. One explanation is that point clouds are unordered sets, and
there are computational challenges in matching point clouds, e.g., convergence and
local minimum issues under both EMD and CD. Such computational challenges
amplify for larger point clouds, as the search spaces become more complex.

6 Conclusions and Limitations

In this paper, we propose IAE, a simple yet effective self-supervised learning
framework for the point cloud. Unlike the conventional autoencoder for point
cloud which reconstructs input point cloud explicitly, we reconstruct the implicit
function representation. We argue that IAE can prioritize that the encoder
discards sampling variations, introducing more space to learn useful features.
We found such simple change already enables the pre-training model to learn
better representation and achieve considerable improvement over a wide range
of downstream tasks, including 3D shape classification, 3D object detection,
and 3D semantic segmentation. We also demonstrate how completing partial
input can further boost the pre-training gains by learning mid to high level
semantic concepts. One limitation of our work is that we require an additional
pre-processing step of the raw point cloud to get implicit representation training
labels. Another limitation is that we only experimented with hand-crafted implicit
function targets, such as signed distance function, while jointly learning implicit
function targets might bring more improvements.
Acknowledgements. Part of this work was initiated when Siming Yan was a
summer research intern at Wormpex AI Research. We would like to thank Bo
Sun and Haitao Yang for the helpful discussions. Qixing Huang would like to
acknowledge the support from NSF Career IIS-2047677 and NSF HDR TRIPODS-
1934932. Gang Hua is partly supported by National Key R&D Program of China
Grant 2018AAA0101400, NSFC Grants 61629301, 61773312, and 61976171.

References

1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. In: International conference on machine
learning. pp. 40–49. PMLR (2018) 4, 9

2. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese,
S.: 3d semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 1534–1543 (2016) 1,
11

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence 35(8),
1798–1828 (2013) 2

Implicit Autoencoder 17

4. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised
learning of visual features. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 132–149 (2018) 3

5. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012 (2015) 1, 4, 9

6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive
learning of visual representations. In: International conference on machine learning.
pp. 1597–1607. PMLR (2020) 2, 3

7. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 5939–5948 (2019) 4

8. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5828–5839 (2017) 1, 9

9. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning
by context prediction. In: Proceedings of the IEEE international conference on
computer vision. pp. 1422–1430 (2015) 2, 3

10. Erhan, D., Courville, A., Bengio, Y., Vincent, P.: Why does unsupervised pre-
training help deep learning? In: Proceedings of the thirteenth international
conference on artificial intelligence and statistics. pp. 201–208. JMLR Workshop
and Conference Proceedings (2010) 2

11. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object
reconstruction from a single image. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 605–613 (2017) 3

12. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: 2012 IEEE conference on computer vision and pattern
recognition. pp. 3354–3361. IEEE (2012) 1

13. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit
functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4857–4866 (2020) 4

14. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.:
Learning shape templates with structured implicit functions. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 7154–7164 (2019) 4

15. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728 (2018) 3

16. Han, Z., Wang, X., Liu, Y.S., Zwicker, M.: Multi-angle point cloud-vae: Unsupervised
feature learning for 3d point clouds from multiple angles by joint self-reconstruction
and half-to-half prediction. In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 10441–10450. IEEE (2019) 9

17. Hassani, K., Haley, M.: Unsupervised multi-task feature learning on point clouds.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 8160–8171 (2019) 4

18. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. arXiv preprint arXiv:2111.06377 (2021) 2, 4

19. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 9729–9738 (2020) 3

20. Huang, S., Xie, Y., Zhu, S.C., Zhu, Y.: Spatio-temporal self-supervised representa-
tion learning for 3d point clouds. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 6535–6545 (2021) 9, 10, 11, 12

21. Li, J., Chen, B.M., Lee, G.H.: So-net: Self-organizing network for point cloud
analysis. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 9397–9406 (2018) 4, 9

18 Yan et al.

22. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: Convolution on x-
transformed points. Advances in neural information processing systems 31, 820–830
(2018) 9

23. Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., Cui, Z.: Dist: Rendering deep
implicit signed distance function with differentiable sphere tracing. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
2019–2028 (2020) 4

24. Liu, S., Saito, S., Chen, W., Li, H.: Learning to infer implicit surfaces without 3d
supervision. arXiv preprint arXiv:1911.00767 (2019) 4

25. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-
encoders for hierarchical feature extraction. In: International conference on artificial
neural networks. pp. 52–59. Springer (2011) 2, 4

26. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4460–4470
(2019) 4, 9, 13

27. Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.:
Implicit surface representations as layers in neural networks. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 4743–4752 (2019) 4

28. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4d
reconstruction by learning particle dynamics. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 5379–5389 (2019) 4

29. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 3504–3515 (2020) 4

30. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving
jigsaw puzzles. In: European conference on computer vision. pp. 69–84. Springer
(2016) 3

31. Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture
fields: Learning texture representations in function space. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 4531–4540 (2019) 4

32. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning
continuous signed distance functions for shape representation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 165–174
(2019) 4, 9

33. Paschalidou, D., Gool, L.V., Geiger, A.: Learning unsupervised hierarchical part
decomposition of 3d objects from a single rgb image. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1060–1070
(2020) 4

34. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders:
Feature learning by inpainting. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 2536–2544 (2016) 2, 3

35. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional
occupancy networks. In: Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16. pp. 523–540. Springer
(2020) 4, 11, 13, 14

36. Poursaeed, O., Jiang, T., Qiao, H., Xu, N., Kim, V.G.: Self-supervised learning of
point clouds via orientation estimation. In: 2020 International Conference on 3D
Vision (3DV). pp. 1018–1028. IEEE (2020) 4, 9, 10, 11

37. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detection
in point clouds. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 9277–9286 (2019) 9, 11

Implicit Autoencoder 19

38. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 652–660 (2017) 9, 10

39. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017) 9

40. Rao, Y., Liu, B., Wei, Y., Lu, J., Hsieh, C.J., Zhou, J.: Randomrooms: Unsupervised
pre-training from synthetic shapes and randomized layouts for 3d object detection.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 3283–3292 (2021) 4, 11

41. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. International journal of computer vision 40(2), 99–121 (2000) 3

42. Sauder, J., Sievers, B.: Self-supervised deep learning on point clouds by reconstruct-
ing space. arXiv preprint arXiv:1901.08396 (2019) 4, 9, 11, 12

43. Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding
benchmark suite. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 567–576 (2015) 1, 11

44. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and deformable convolution for point clouds. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 6411–6420
(2019) 9

45. Tschannen, M., Bachem, O., Lucic, M.: Recent advances in autoencoder-based
representation learning. arXiv preprint arXiv:1812.05069 (2018) 2

46. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th interna-
tional conference on Machine learning. pp. 1096–1103 (2008) 2, 4

47. Wang, H., Liu, Q., Yue, X., Lasenby, J., Kusner, M.J.: Unsupervised point cloud
pre-training via view-point occlusion, completion. arXiv preprint arXiv:2010.01089
(2020) 2, 4, 9, 10, 11, 12, 13, 14

48. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38(5),
1–12 (2019) 9, 10, 12

49. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a
probabilistic latent space of object shapes via 3d generative-adversarial modeling. In:
Proceedings of the 30th International Conference on Neural Information Processing
Systems. pp. 82–90 (2016) 9

50. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A
deep representation for volumetric shapes. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 1912–1920 (2015) 9

51. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-
parametric instance discrimination. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 3733–3742 (2018) 2, 3, 4

52. Xiang, P., Wen, X., Liu, Y.S., Cao, Y.P., Wan, P., Zheng, W., Han, Z.: Snowflakenet:
Point cloud completion by snowflake point deconvolution with skip-transformer. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
5499–5509 (2021) 13, 14

53. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: Pointcontrast:
Unsupervised pre-training for 3d point cloud understanding. In: European
Conference on Computer Vision. pp. 574–591. Springer (2020) 4, 10, 11, 12

54. Yang, Y., Feng, C., Shen, Y., Tian, D.: Foldingnet: Point cloud auto-encoder via
deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 206–215 (2018) 2, 4, 9, 10, 13, 14

55. Yi, L., Kim, V.G., Ceylan, D., Shen, I.C., Yan, M., Su, H., Lu, C., Huang, Q.,
Sheffer, A., Guibas, L.: A scalable active framework for region annotation in 3d
shape collections. ACM Transactions on Graphics (ToG) 35(6), 1–12 (2016) 1

20 Yan et al.

56. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: Pcn: Point completion network.
In: 2018 International Conference on 3D Vision (3DV). pp. 728–737. IEEE (2018) 4

57. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: European
conference on computer vision. pp. 649–666. Springer (2016) 3

58. Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3d
features on any point-cloud. arXiv preprint arXiv:2101.02691 (2021) 4, 11

59. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 16259–16268
(2021) 9

60. Zhuang, C., Yan, S., Nayebi, A., Schrimpf, M., Frank, M.C., DiCarlo, J.J., Yamins,
D.L.: Unsupervised neural network models of the ventral visual stream. Proceedings
of the National Academy of Sciences 118(3) (2021) 3

61. Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning of
visual embeddings. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 6002–6012 (2019) 3

Implicit Autoencoder 21

A Proof of Propositions in Section 3

Denote
X = (x1, · · · ,xN), X ′ = (x′1, · · · ,x′N).

To obtain closed-form expressions of the linear auto-encoding problem, we
reformulate the optimization problem as

min
R,B∈Rn×m,RTR=Im

N∑
k=1

‖RBTx′k − xk‖2 (9)

The following proposition specifies the optimal solution to (9).

Lemma 1. The optimal solution (R?, B?), R,B ∈ Rn×m to (9) satisfies that the
columns of R? are the leading m eigenvectors with the largest eigenvalues of

(X ′X)T (X ′X ′
T

)+(X ′XT).

Moreover,

B? = (X ′X ′
T

)+(X ′XT)R?.

Proof. Denote R = (r1, · · · , rm) and B = (b1, · · · , bm). Then

N∑
k=1

‖RBTx′k − xk‖2 =
N∑
k=1

(
x′k

T
BBTx′k − 2(RTxk)T (RTx′k) + ‖xk‖2

)
=

N∑
k=1

(m∑
j=1

(
(bTj x

′
k)2 − 2(rTj xk)(bTj x

′
k)
)

+ ‖xk‖2
)

=
m∑
j=1

(
bTj
(N∑
k=1

x′kx
′
k
T)

bj − 2(
N∑
k=1

x′kxk
Trj)

T bj

)

+
N∑
k=1

‖xk‖2 (10)

Therefore, define

{b?j , 1 ≤ j ≤ m} = argmin
bj

N∑
k=1

‖RBTx′k − xk‖2.

Since bj lies in the column space of X ′, it is clear that the optimal solution b?j is
given by

b?j =
(N∑
k=1

x′kx
′
k
T
)+(N∑

k=1

x′kxk
T
)
rj

= (X ′X ′
T

)+(X ′XT)rj , 1 ≤ j ≤ m. (11)

22 Yan et al.

Substituting (11) into (10), we have that the objective function becomes

N∑
k=1

‖RB?Tx′k − xk‖2

=
m∑
j=1

rTj

(
XX ′

T
)(
X ′X ′

T
)+(

X ′XT
)
rj

− 2
m∑
j=1

qTj

(
XX ′

T
)T(

X ′X ′
T
)+(

X ′XT
)
rj +

N∑
k=1

‖xk‖2

=−
m∑
j=1

rTj

(
X ′XT

)T(
X ′X ′

T
)+(

X ′XT
)
rj +

N∑
k=1

‖xk‖2 (12)

Therefore, the optimization problem in (9) reduces to

max
R∈Rn×m,RTR=Im

Trace

(
RT
(
X ′XT

)T(
X ′X ′

T
)+(

X ′XT
)
R

)
(13)

It is easy to see that the optimal solution R? = (r?1, · · · , r?m) to (9) satisfies that

r?i , i ∈ [m] are the leadingm eigenvectors of CX′,X :=
(
X ′XT

)T(
X ′X ′

T
)+(

X ′XT
)

.

A.1 Proof of Proposition 1

We show that when εk ∈ {L }⊥ , k ∈ [N],

R? = B? = Q.

Therefore, the formulation of (1) is identical to that of (9). In fact, consider the
singular value decomposition (SVD) of

X ′ = UΣV T .

First,

XTX =XTX ′

=XTUΣV T .

Therefore, V is an orthnormal basis of the column space of XT . This means we
can write out the SVD of X = U ′Σ′V T . Again using XTX = XTUΣV T , we
have

V Σ′2V T = V Σ′U ′
T
UΣV T .

It follows that
Σ′2 = Σ′U ′

T
UΣ.

Implicit Autoencoder 23

In other words,

U ′Σ′ = UΣ.

This means we can arrange the SVD of X so that

U ′ = U,Σ′ = Σ.

We proceed to show that (XX ′
T

)(X ′X ′
T

)+(X ′XT) = XXT . In fact,

(XX ′
T

)(X ′X ′
T

)+(X ′XT)

= XV ΣUT
(
UΣV TV ΣUT

)+
(UΣV TXT)

= XV ΣUT
(
UΣ2UT)+(UΣV TXT)

= XV ΣUTUΣ−2UTUΣV TXT

= XV V TXT

= XV ΣUT (UΣ−2UT)UΣV TXT

= XV ΣUT (UΣ2UT)+UΣV TXT

= XXT (XXT)+XXT = XXT .

Moreover,

(X ′X ′
T

)+(X ′XT)

= (UΣV V TΣUT)+(UΣV TV ΣU)

= (UΣ2UT)+(UΣ2U)

= In.

A.2 Proof of Proposition 2

Let us first consider the case where the corresponding eigenvalues of Q are
distinctive. Let qj ,m+1 ≤ j ≤ n expand the columns of Q to form an orthonormal
basis of Rn. In this case, applying the derivative formula of eigenvectors to each

24 Yan et al.

eigenvector and the fact that εk ∈ {L }⊥, we obtain

dqi = −
∑
j 6=i

qTj
N∑
k=1

(xkε
T
k + εkx

T
k)qi

λj − λi
qj (14)

= −
m∑

j 6=i,j=1

qTj
N∑
k=1

(xkε
T
k + εkx

T
k)qi

λj − λi
qj −

n∑
j=m+1

qTj
N∑
k=1

(xkε
T
k + εkx

T
k)qi

λj − λi
uj

= −
n∑

j=m+1

qTj
N∑
k=1

εkx
T
k qi

λj − λi
qj

=
(n∑
j=m+1

qjq
T
j

)(N∑
k=1

εkx
T
k

)
qiλ
−1
i =

(
In −QQT

) N∑
k=1

εkx
T
k qiλ

−1
i . (15)

It is easy to check that

dqTi qi = 0 1 ≤ i ≤ m
dqTi qj + dqTj qi = 0 1 ≤ i 6= j ≤ m

Therefore, QT Q̂? ≈ I2 up to second-order errors O({‖ε2k‖}). Therefore, the

rotation matrix used to calibrate Q̂? and Q when defining D(Q̂?, Q) is the
identity matrix up to second-order errors O({‖ε2k‖}). Applying (15), we have

∂ {D } (Q̂?, Q)

∂εki
=
(
In −QQT

) (
ekx

T
k q1λ

−1
1 , · · · , ekxTk qmλ−1m

)
= (In −QQT)ekx

T
kQΛ

−1.

The proof under the case where the eigenvalues of Q are repeating is similar,
except that the summation in (14) shall discard (i, j) pairs where λi = λj . On the
other hand, the uncertainties in eigenvectors when having repeating eigenvalues
are addressed by the calibration rotation matrix in D(Q̂?, Q).

